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We present a notion of non-cooperative strategic equilibrium for games generated by social choice 
functions, and fully characterize the class of those functions which are directly implementable under 
this equilibrium concept. Correct preference revelation turns out to always be such an equilibrium for 
the games generated by this class of implementable functions. 

1. Introduction 

Social choice functions choose the ‘best’ outcome corresponding to each profile 
of individual preferences. Implementing a given social choice function is to make 
sure that the relationship it establishes between individual preferences and ‘best’ 
outcomes always holds. One possible way of implementing a given rule is to first 
ascertain what individual preferences are, and then find their image. However, 
since information on an individual’s preference is private to the individual, this 
method will not work unless the individual is motivated to reveal his actual 
preference. 

A particularly clear-cut case arises under rules for which revealing one’s own 
preference is always a dominant strategy. In this case, no individual would 
ever gain by revealing preferences other than those by which he actually 
evaluates social outcomes, and such rules would be implementable provided 
individuals are rational. Moreover, implementation could be decentralized, 
since computation of one’s own preferences does not require any knowledge 
about the preferences and/or the strategies of others. Unfortunately, the 
Gibbard/Satterthwaite theorem shows that truthful revelation of preferences 
is always a dominant strategy only under trivial social choice functions. 

Thus, in general, the possibility of implementing a social choice function is 
subject to a number of qualifications. A social choice functionfcan be viewed as 
the outcome function of a gameform where individual strategies are the possible 

*The authors gratefully acknowledge helpful criticism by two referees, which led to a reassessment 
of the result presented in section 4. 
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preference orderings of alternatives. ’ Each specification of a preference profile 
will determine a pay-off function for each player and thus complete the 
description of one of the games generated byf: We can analyse games within this 
class by using different equilibrium concepts, each reflecting our assumptions 
about the information that each individual has about the others’ preferences and 
about the strategic behaviour of individuals. A social choice function is 
implementable via equilibria of type cx iff it is the case that for each game generated 
byf, the outcomes associated with any of its equilibria of type CI coincides with the 
image underfof the profile determining the pay-offs. The underlying motivation 
for this definition is that whatever the individuals’ preferences might be, such a 
social choice function would lead to its expected outcomes provided the 
individuals’ strategic behaviour led them to settle at equilibria of type a. 

The concept of implementable social choice functions was first introduced by 
Maskin (1977). Maskin proved that only dictatorial social functions or social 
choice functions whose range is restricted to only two outcomes are 
implementable via Nash equilibria. Again, keeping to a non-cooperative 
framework, and further assuming that every agent has full information about the 
preference profile, Moulin (1979) has examined the implementation problem 
using Farquharson’s notion of sophisticated voting, where the agents mutually 
anticipate their strategies by successively eliminating dominated strategies. 

Both the above specifications of equilibrium behaviour require extreme 
assumptions about the extent of information possessed by agents. Each agent 
knows not only the preferences of other individuals, but also their strategic 
behaviour. In this paper, we make the polar assumption that agents have no 
information at all about other agents’ preferences, and hence about their strategic 
behaviour. We assume that this leads an agent to use ‘protective’ strategies of a 
lexical maximin type, and completely characterise the class of social functions 
which are implementable when individuals so choose their strategies. 

In our way toward a technical characterization we discover an important fact: 
if a social choice function is directly implementable via protective equilibria, then 
correct preference revelation by all individuals is always a protective equilibrium. 
Therefore, we recover some of the interesting features of implementation by 
dominant strategies: our functions can be implemented in a decentralized way, 
and truthful revelation of preferences becomes one practical way toward this 
goal. While the observation that truthful preference revelation is not an objective 
per se lies at the origin of the implementation literature, truth turns out to be here 
the (essentially unique) device for decentralized implementation of social decision 
functions via protective equilibria. 

The paper is organized as follows. In section 2, we introduce the basic notation 
and definitions. Section 3 introduces the concept of protective equilibria and 

‘In general, a game form is an (n + l)-tuple g=(X,, . ., X,, z) where Xi is the strategy set of 
individual i, and x is the outcome function. A social choice functionfwhich is implemented through 
the game from g = (9’,8,. . ., .9,f) is said to be directly implementable. 
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discusses its connection to related concepts. In section 4 we state and prove a 

theorem relating protective to truthful strategies under social decision functions 
which are implementable via our equilibrium concept. Section 5 presents some 
examples which illustrate the structure of such social choice functions, of which 
section 6 provides a complete characterisation. Section 7 contains some 
concluding remarks. 

2. The notations and basic definitions 

Let A = {x, y, z, . . . } be a finite set of alternatives, with cardinality m. Let 
I = 11.2,. ., FI) be an initial segment of the integers, whose elements are called 
individuals. 9 is the set of asymmetric orderings over A. Elements of 9’ are 
represented by P, P’, P,, Pi,. . ., and are called preferences. 

If PEP, Yc A, we say that Y is bottom for P iff (VIE Y) (Vx E A- Y) xPy. 
For k E [ 1, m], P E g’, the k-bottom of P denoted by B(k, P) is the unique subset 

of A which is bottom for P and contains exactly k alternatives. 
For P, P’ E 9, Y c A, we say that P and P’ agree on Y iff (Vx, y E Y) [xPy++xP’y]. 

Where P E c9, r E [ 1, m], the rth ranking worst alternative in P, denoted by a,(P), is 
defined by a,(P) = { x E A/there exist exactly (r - 1) alternatives y E A:xPy}. 

Let 9”” be the n-fold Cartesian product of 9’. Elements of 9” are denoted by 

P, I”, . and are called preference profiles. 
Let iEI. Given a preference profile P=(P1,Pz,...,Pi_l,Pi,Pi+l,...P,), we 

maydenoteit by P=(P,,P_J,where P_i=(P,,P,,...,Pi_,,Pi+,,...,P,).Given 
PEP’ and P:E~‘, P/PidAf(Pl, P,,.. ., PipI, Pi, Pi+l,. .., P,); i.e., P/P:standsfor a 
profile obtained from P by changing its ith component from Pi to Pi. 

A social choice function (SCF) is a functionf:9”+A. 
An SCFfis non-dictatorial (ND) iff there does not exist igl such that for all 

PEF’,~(P) is Pi-maximal in the range off: 
An SCF satisfies the Pareto Criterion (P) iff for all PEP’“, for all ye A, if there 

exists x such that xPiy for all iE I, thenf(P) # y. 

Given any SCF L for any Pi E .!? and x E A, we denote by g,(x, Pi) the set 
{P_i~.9’-‘/f(P_i, Pi)=x}. When there is no ambiguity about the SCF, we will 

simply write g(x, Pi), g(x, Pi), etc. 
Let i E I, Pi, Pi E 9and Y c A. We say that Pi and Pi are Y-equivalentfor i underf 

iff (Vy E Y) Cg,-( y, Pi) =g,(y, Pi)]. Pi and Pi are equivalent for i iff they are A- 
equivalent. 

3. Protective equilibria 

The Gibbard-Satterthwaite result is sometimes interpreted to mean that all 
non-dictatorial SCF’s induce strategic misrevelation of preferences. However, 
what the Gibbard-Satterthwaite result actually tells us is that non-dictatorial 
SCF’s are not strategy proof, i.e., truth-telling is not a dominant strategy for all 
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profiles and all individuals. In order to deduce the negative conclusion that 
individuals will misreveal their preferences, one has to describe the strategic 
behaviour of agents when they no longer have dominant strategies. In this 
section, we specify an informational framework and make a behavioural 
assumption under which individuals will in fact always use their truthful 
strategies for a certain class of SCF’s. 

To be more specific, we assume that no agent has information about other 
agents’ preferences. This obviously implies that agents do not have any 
information about the strategic choices which are likely to be made by others. 
Suppose also that all agents are extremely risk-averse. Under these assumptions, 
agents would choose their strategies so as to ‘protect’ themselves from the worst 
eventuality as far as possible. We capture this notion by specifying a type of 
‘lexical maximin’ behaviour. 

Let f be a given SCF. All ensuing definitions are relative tof: 

For any i E I, given his preference Pi, a strategy Pi* protectively dominates Pf*, 
denoted by PTd(Pi)P**, if there exists ke [l,m] such that 

(9 g(ak(PA P?) 5 dadPA Pi* *I, 

and 

(ii) 

Let 

g(a,(PJ, PZ) =JA4PiL E*), Vr<k. 

D(PJ= {P:E~‘/- PTd(P,)P: for any PT}. 

We say that PEP” is a protective equilibrium under P iff (ViEI) Pi E D(Pi). 
A social choice function f is directly implementable via protective equilibria 

(d.i.p.e.) iff (VP, P E 9”) [P is a protective equilibrium under P] +[ f (P) =f (P)]. 
Thus, in evaluating two strategies Pf and Pz*, agent i compares g(aI(P,), PT) 

and g(al(P,), P**). If, for instance, g(al(P,), P*) is a proper subset of g(al(Pi), PT*), 
then agent i prefers to use P: rather than P:* since whenever Pz gives him his 
worst outcome (in terms of Pi), P,** also does the same, but the converse is not 
true. If the two strategies are ai(equivalent, then he comparesg(a,(P,), PT) and 
g(a,(P,), Pz*), and so on. Having eliminated protectively dominated strategies in 
this manner, agent i is left with the set D(Pi). An SCF is d.i.p.e. iff for all preference 
profiles P=(P,, P,,. . ., P,), any choice of strategies Pi by all individuals from their 
corresponding sets D(Pi) would guarantee that f (PI, p,, . . ., P,,) =f (P). 

The notion of protective equilibria is closely related to Moulin’s (1981) concept 
of prudent behaviour.* 

‘See also BarberA’s (1980) notion of ‘protective stability' which essentially requires that truth-telling 
be the unique maximin strategy. 
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For any i E I, given Pi E 8, P: is a prudent strategy iff there does not exist P,** 
such that for some k E [ 1, m] the following holds: 

The concept of implementation via prudent strategies and d.i.p.e. are both 
relevant within a framework where agents are extremely risk-averse and they 
have no information about other agents’ preferences. However, we feel that the 
assumption of risk-averse agents using ‘protectively non-dominated’ strategies is 
more appropriate than that of specifying use of ‘prudent’ strategies. Implicit in the 
concept of prudent behaviour seems to be the assumption that an agent i 
considers all P_ i E pnml equally likely. Whether the equi-probability assumption 
is a good representation of complete ignorance is a debatable question. Note that 
the concept of ‘protective equilibria’ is applicable even if agents have no 
subjective probability distribution about others’ strategies. 

Of course, D(P,), the set of protectively non-dominated strategies, contains the 
set of prudent strategies. This makes d.i.p.e. more discriminatory than 
implementation through prudent strategies. Indeed, Moulin (1981) remarks that 
under rules like plurality voting and the Borda count, the only prudent strategy is 
to tell the truth: this suffices to make them implementable via sets of prudent 
strategies. However, that these rules are not d.i.p.e. will be evident from our 
characterisation theorem. The relationship between truth-telling and 
implementation in our setting will be discussed in the next section. 

The assumption that agents have no information about other individuals’ 
preferences is the polar extreme of the assumption of complete information, 
which is implicit in notions like Farquharson’s ‘sophisticated’ behaviour (i.e., 
successive elimination of dominated strategies, based on the assumption that 
other agents are also eliminating their dominated strategies) or the more common 
Nash equilibrium. However, the difference in these concepts does not end with 
different knowledge requirements alone. For suppose that agent i knows j’s 
preference ordering Pi, but does not know anything at all about j’s strategic 
behaviour. Even in such circumstances, notions based on maximin behaviour 
are applicable. (They may become less appealing, however, because even a weak 
behavioural assumption that all agents use only non-dominated strategies would 
call for a modification of prudent or protective behaviour.) On the other hand, the 
use of sophisticated strategies entails not only complete information about 
preferences, but also strong assumptions about strategic behaviour. 

The notions of protective, prudent and sophisticated behaviour focus 
directly on an individual’s choice of strategies. On the other hand, Nash 
equilibrium and similar concepts of equilibrium behaviour seem to implicitly 
assume that a trial and error process goes on until the equilibrium is arrived at. 
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Sengupta (1978) points out that in two-person, non-zero-sum games, it is possible 
that the two individuals’ maximin strategies may not coincide with their Nash 
equilibrium strategies, and goes on to argue that even if a strategy n-tuple is not in 
equilibrium, individuals may still choose these strategies. This line of argument 
has obvious significance for the problem of implementation, particularly in a 
non-cooperative context, and seems to make concepts like ‘protective equilibria’ 
more interesting. 

4. Truthful revelation under implementable functions 

This section is devoted to prove that a social choice function is d.i.p.e. if and 
only if, for all individuals i and all preferences Pi, the set of protectively 
undominated strategies D(Pi) consists of strategies which are equivalent to Pi 
(and thus, in particular, always contains Pi). This provides us with an alternative 
definition of d.i.p.e. functions, to be used in all proofs thereafter. 

Besides its technical convenience, we find the result to be interesting on its own. 
There is no ‘a priori’ reason why implementation of social choice functions should 
be achieved through equilibria involving truthful preference revelation. In fact, 
focusing on the implementability of rules reflects the consideration that correct 
revelation is not an objective per se, and that what we really care about is the 
result of strategic behaviour, rather than its correspondence to truth. Our result 
indicates, however, that the only rules which are implementable in our sense are 
those which in fact guarantee gruthful revelation by all individuals, under the 
behavioural and informational assumptions underlying the definition of a 
protective equilibrium. 

Theorem 1. A social choice function f is directly implementable via protective 
equilibria i# for all i E I, all Pi E 9, 

D(Pi) = { Pr/PT and Pi are equivalent). 

Proof The condition on D(P,) is obviously sufficient for an SCF to be d.i.p.e. We 
must prove that it is also necessary. All statements below refer to a given d.i.p.e. 
SCF, f: 

(a) We first show that, if PT and P,** are not equivalent, then D(Pr) n D(PT*) 
=a. That is, for each Pi, D(Pi) consists of exactly one class of equivalent 
strategies. Since 9 is finite, this also implies that every Pi must belong to some 
D(P;). 

Suppose Pied n D(P,**). Since Pi* and PT* are not equivalent, 
3P_i~9’-1 such thatf(P:, P_i)=~,f (Fir*, P_i)=y and Y#X. Let BjED(Pj) for 
all j # i. Then, since f is d.i.p.e., f (pi, P _ i) = x and f (pi, p _ i) = y, which is not 
possible. 
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(b) To complete the proof it suffices to show that the one class of equivalent 
strategies D(Pi) consists of those which are equivalent to Pi, for all Pi. Thus, we 

suppose there was some Pf' such that P" tf D(Pp), and show that this leads to a 
contradiction. 

Since Pp $D(Pp), there exists Pf ED such that P!d(Pp)Pp. Hence, there 
exists P'?i~9n-1, x,y~A, such that 

(1) 

g(x, p!, c&G PP,. (3) 

Since P" and Pi are not equivalent, it cannot be, by (a), that Pi E D(P,'). Thus, 
there must exist Pf such that P' E D(P!), and P" is not equivalent to Pf. By 

repeated application of this type of argument we can construct a sequence 

of elements of 9, such that, for all t, P:+D(Pi) and P:E D(P:-'). 
Since 9 is finite, there must exist integers 7: S such that PT and Pr's 

are equivalent. But then, by (a) P,T-' and P,T+S-h are also equivalent, for 
h= 1,2,. . ., 7: In particular, Pp and Pf are equivalent. 

Let now {Pli,..., PTi) be a sequence of elements in .Y’“- 1 such that 
P:ED(P:-~)(V~#~). 

Since f is d.i.p.e., 

(4) 

(3) and (4)+f(Po, Phi)=x. (5) 

Since f is d.i.p.e., 

(6) 

(5) and (6)-+J(Pp, Pci)=x. (71 

In this way, by alternate use of (3) and the fact that f is d.i.p.e., one can show 
that, for all t in our sequence, ,f(PP, P'_i)=x, and, in particular, 

(8) 
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Also, by repeated application of the fact that f is d.i.p.e., from (2) we get 
f(P:, PrYi’) = y for all t in our sequence and, in particular, 

j-p?, F; 1) = y. 

But (8) and (9) contradict the fact that Pp and PF were equivalent. 

This completes the proof of Theorem 1. 

5. Some examples 

The purpose of this section is to illustrate with some simple examples the 
structure of d.i.p.e. SCF’s. The first two are examples of implementable SCF’s. 
Examples 3-5 are examples of SCF’s which are not d.i.p.e. These have been 
chosen so as to illustrate the importance of the necessary conditions described in 
the next section. Throughout this section, Q represents an arbitrary asymmetric 
ordering over A. The reader can refer to the property given by Theorem 1 when 
checking our assertions on the implementability of the functions given in the 
examples. 

Example 1. For any iE I, for any CYE A, given Pi ~9, 

ei(x) =0 if {x> is bottom in Pi, 

= 1 otherwise. 

Then, for any PE 8”, fi(P) = x, where, for all y E A - {x}, 

fi is a member of the class of ‘approval voting’ schemes introduced by Fishburn 
and Brams (1978). Given an individual’s preference Pi, the worst alternative is 
assigned zero points, while all others are assigned one point. For any profile,f, 
chooses that alternative which gets the highest number of points, while Q is used 
as a tie-breaking device. 

fi is d.i.p.e: 

Remark I. fi is not Paretian. This reflects the well-known result that 
noncooperative equilibria need not necessarily be efficient. 

We now give an example of an SCF which is d.i.p.e. and Paretian. 
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Example 2. Let q=(qr, q2,. . , q,,) and r=(rr,. . .,r,,,) be n- and m-tuples of 
positive integers satisfying I;= 1 qi =x7= 1 rj- 1. Denote by rA the set where each 
alternative xj E A is replicated rj times. For any P E Y”, let 

M,(P)= {a/a is amongst the qr-worst elements of rA 
according to PI>, 

Then, 

MAP)= 
r 

a/a is amongst the q,-worst elements of 

A- u M,(P) according to Pi 
l<i I 

. 

fi(P) = rA - iu M,(P)* 

Given that ~~=r q,=cjm, 1 , Y .- 1, f*(P) is unique for all P. Intuitively, each 
i E Z is given qi ‘tokens’ with which to successively veto alternatives, while it takes 
rj tokens to veto xj. The best outcome for any profile is the alternative which 
is not vetoed. 

For every choice of q and r, f2 is d.i.p.e. 

Remark 2. If mzn, thenf, must give some individual i veto power over some 
alternative a, in the sense that a is never the outcome for profiles where it is worst 
in i’s preference ordering. 

Various forms of ‘voting with veto’ rules have been extensively studied in the 
recent literature, following Mueller (1978). Moulin and Peleg (1982) have recently 
shown the close relation between veto power and implementability via strong 
Nash equilibria. However, it appears that veto power has no clear connection 
with implementability via protective equilibria. fr shows that veto power is not 
necessary for d.i.p.e.; the following examples show that veto power is not sufficient 
either. 

Example 3 [Dutta and Pattanaik (1978)]. Let a* be the Q-maximal element in 
A. For any P, let 

E(P) = {x E A/there does not exist y E A:yPix for all i E Z}. 

Then, 

f3(P) = a* 

=a 

if a*EE(P) 

where a is the Q-maximal element in 

E(P) n {x/xPia* for all i E Z}. 
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Thus,f, selects a* if a* is Pareto-optimal; otherwise it selects the Q-maximal 
element amongst those elements which Pareto-dominate a* and which are also 
Pareto-optimal. 

f3 gives veto power to all individuals over the set A - {u*>. However,f, is not 
d.i.p.e. This is shown by the following example. Let 

4={%,%,%,a*}, Z={1,2}, 

P, P; Pz Q 

a3 4 a2 a* 

a1 a3 a3 a1 

a2 a2 4 a2 

a* a* a* a3 

Then, f3(P,, P2) = u2, f3(Pl, Pz) = a,, and P, and P; are a*-equivalent. Since 
u1 P,a,, f3 is not d.i.p.e. 

Remark 3. P; is derived from P, by a reshuffling of alternatives abovef,(P,, P2) 
=u2. If f3 is to be d.i.p.e., such changes should not alter the outcome. 

Example 4. Let IAl=4,1={1,2,3,4}. For any PEP’“, 

(i) If P, and.P, agree on B(2, PJ, then f4(P) = x, where x is P,-maximal on 
A - B(2, PI). 

(ii) If P, and P, do not agree on B(2, PI), thenf,(P) = y, where y is P,-maximal on 
A - B(2, PI). 

The following proves thatf, is not d.i.p.e.: 

PI P; p2 p3 p4 

X x x y x 

Y Y Y x Y 
Z w z z z 

W Z w w w 

Then,f,(P,, P-l)=y,f,(P’l, P-1)=x, where P-, =(P2, P,, P4). Also, PI and P; 
are (z, w}-equivalent. Clearly, N P,d(P,)P;, so that f4 is not d.i.p.e. 
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Remark 4. Underf,, P, and Pi are B(2, P,)-equivalent, B(2, P,) = B(2, P;), but 
the order in which 1 vetoes alternatives changes the outcome. This leads to a 
violation of d.i.p.e. 

Our last example shows violation of another of the necessary conditions for 
d.i.p.e. 

Example 5. Let A={a,,a,,a,}. For any PELF”, 

f5(P)=al when a2 = B( 1, Pi) for all i E I. 

=a2 otherwise. 

Consider the following P, , P; , P, E 9: 

Then, f5(P1, P2) = a,, f5(p;, P2) = a,. It is easy to check that P;d(P,)P,. Hence, 
f5 is not d.i.p.e. 

Remark 5. There is an important qualitative difference between f3, f4 and f5. 
Underf,, P, (and hence all strategies equivalent to P,) does not belong to D(P,), 
while forf3 and f4, D(Pi) will be ‘large’ since it will contain Pi as well as strategies 
which are not equivalent to Pi. In a sense, lack of information about others’ 
preferences or their strategic behaviour causes non-implementability off, and f4. 

6. The characterisation 

In this section, we provide the necessary and sufficient conditions for a social 
choice function to be implementable via protective equilibria. 

It is useful to recall a condition introduced by Muller and Satterthwaite (1977): 

Strong Positive Association (SPA). (Vi E I) (VPE 9”) (VP: E 9) [f(P) = x, and (Vz) 
(XPiZ~XP:Z)]~f (P/P:)=X. 

The following result is well-known in the literature. 
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Proposition. The following statements are equivalent when IAl 2 3: 

(A) f is strategy proof 
(B) f is implementable via Nash equilibrium. 
(C) f is implementable via strong Nash equilibrium. 
(D) f is dictatorial. 
(E) f satisfies SPA. 

Since a dictatorial SCF is d.i.p.e., SPA is a sufficient condition, although it is 
clearly not necessary in view of our Examples 1 and 2. However, these 
equivalence results seem to suggest that conditions like SPA are important. An 
obvious point of departure is to factorise SPA, and then see what parts are crucial 
for d.i.p.e. 

Condition 1 (Monotonicity). (Vi E I) (VPE 9’) (VP: E 9’) [(f(P) = x), (Pi and Pi 
agree on A- {x}) and (Vz) (xPiz+xPiz)] +f (P/Pi) = x. 

Condition 2. (Vi E I) (VPE 9’“) (VP; ~9’) [(f(P) = a,(PJ) and (B(r, Pi) = B(r, Pi)) and 
(Pi and Pi agree on B(r, Pi))] -+f (P/Pi) =f (P). 

Condition 3. (Vi E I) (VP E 9”“) (VP; E 9) [(f(P) = a,(PJ) and (B(r, Pi) = B(r, I’:)) and 
(Pi and Pi agree on A- B(r, Pi))] -+f (P/Pi) =f (P). 

It is straightforward to show that SPA is equivalent to the conjunction of 
Conditions 1, 2 and 3. Condition 1 is the familiar ‘non-perversity’ condition. 
Condition 2 states that if x is the outcome under a profile, and the only change is 
that the relative ordering among alternatives that an individual i ranked better 
than x is altered, then x should still be the outcome under the new profile. 
Condition 3 is the ‘dual’ to Condition 2, and requires that the outcome x should 
not change if the new profile is obtained from the old by a reshuffling of 
alternatives below x. 

We will retain Conditions 1 and 2, the conjunction of which will be denoted 
Upper Strong Positive Association (USPA). Condition 3 will be replaced by the 
following conditions: 

Lower Conditional Independence (LCI). (Vi E I) (VPE 9”) (VP; E 9) [(f(P) 
= a,.+ l(Pi)) and (B(r, Pi) = B(r, Pi)), and (Pi and P; are B(r, PJ-equivalent and they 
agree on A - B(r, Pi))] +f (P/Pi) = a,+ 1(Pi). 

Bottom Equivalence (BE). (Vi E I) (VP,, Pi E Y) [(Pi and Pi are B(k, Pi)-equivalent, 
but are not B(k + 1, Pi)-equivalent) and (Pi and Pi agree on A - B(k, Pi))] +B(k, Pi) 
= B(k, P;). 
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LCI essentially states the following. Suppose Y is a bottom set Of Pi and Pj, and 
they are Y-equivalent. Moreover, these strategies agree on A - Y so that the only 
difference between Pi and Pi is a reshulfling of alternatives in Y Then, LCI 
requires that Pi and Pi should be equivalent. An implication of LCI is that if an 
individual can veto two or more alternatives, then the order in which he vetoes 
the alternatives should not influence the final outcome, so long as he vetoes the 
same set of alternatives. Although the condition may sound innocuous, we have 
already seen a violation of LCI - f4. 

BE is somewhat more complicated. It requires that if Y is the maximal bottom 
set of Pi for which Pi and Pi are equivalent, then Y is also a bottom set for Pi. Both 
f3 and f5 violate this condition. 

Lemma. BE, LCI and USPA are logically independent. 

Proofi See the appendix. 

Theorem 2. An SCF f is directly implementable via protective equilibria iff it 
satisfies USPA, LCI and BE. 

Proof Necessity: (i) Suppose f violates USPA. Then, there exists ie I, PEP”, 
Pj E 9 such that 

(a) f(p)=x=ur(pi), 

(‘4 B(r-l,Pi)=B(r-l,P& 

(4 

(4 

Pi and Pj agree on B(r- 1, Pi), 

fWPI)= Y#X. 

(A) Suppose YPiX. We want to show that N Pid(Pi)PI. Suppose Pid(Pi)P:. Given 
yPix, (a) and (d) imply that for some k < r, Pi and Pi are (1) B(k - 1, Pi)-equivalent, 
and (2) g(U,(PJ, Pi) Fg(U,(PJ, Pi). However, (b) and (c) imply that Pi and Pj agree 
on B(k-l,P,), B(k- l,Pi)=B(k- 1, Pi), and U,(Pi) = a,(P:). From (1) and (2), it 
follows that Pid(P:)P:, SO that f is not d.i.p.e. 

(B) If XPiy, then in an analogous manner, it can be shown that -P:d(P:)Pi. 
Hence, USPA is necessary for d.i.p.e. 

(ii) Suppose f violates LCI. Then, there exist i E I, PE 9”‘, Pi E 4” such that f (P) 
= a,+ l(Pi) =x, B(r, Pi) = B(r, Pj), Pi and Pi agree on A- B(r, Pi) and they are 
B(r, Pi)-equivalent, but f (P/P:) = y #x. 

Since Pi and Pi are B(r,P,)-equivalent, it must be true that yPix. Hence, 
g(X, Pi) $g(X, Pi). Since X = a,, r(PJ and g(a,(PJ, Pi) =g(a,(PJ, PI) (vk 5 r), 
this shows that - Pid(Pi)Pi. Since Pi and Pi are not equivalent, this shows thatf is 
not d.i.p.e. 
JMathE- C 
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Hence, LCI is necessary for d.i.p.e. 

(iii) If BE does not hold, then there exist i E I, Pi, Pi E 9” such that 

(4 Pi and Pi are B(k,P,)-equivalent, 

04 Pi and Pi are not B(k+ l,Pi)-equivalent, 

(4 Pi and Pi agree on A - B(k, Pi), 

(4 B(k pi) # B(k pi). 

Let x = uk + l(Pi). From (c) and (d) it follows that x E B(k, Pi). Since Pi and Pi are 
not {x)-equivalent, there are two possibilities: 

Case (I). There exists P? i such that f(Pi, P5i) =x #f(PF i, Pi) = y. 

Case (2). There exists PY: such that f(Pi, PYT) = x #f(PT:, Pi) = y. 

Suppose Case (1) holds. Since Pi and Pi are B(k, Pi)-equivalent, we must have 

yP,x. Hence - Pid(Pi)P:. 

Suppose Case (2) occurs. Let x = q(P:). From (a) and(c), it follows that yP;x and 
Pi and Pi are B(I- 1, Pi)-equivalent. Hence, - P:d(PI)Pi. 

Thus, in either case,f is not d.i.p.e. and BE is necessary for d.i.p.e. 

Sufficiency. Suppose Pi and Pi are not equivalent. Let a,(P,) be such that Pi 
and Pi are loot {q(P,)]- e q uivalent, but are B(r - 1, Pi)-equivalent. Construct PT 

such that 

(4 

(b) 

B(r- l,Pi)=B(r- 1, P,*), 

Pi and P* agree on B(r - 1, Pi), 

(4 Pi and Pt agree on A - B(r - 1, Pi). 

Given USPA, (a) and (b) imply that Pi and P) are B(r- 1, Pi)-equivalent. Since 
Pi and Pi are B(r-- l,P,)-equivalent, we must have Pi* and Pi also B(r- l,P,)- 
equivalent. Since Pi and Pi* agree on A - B(r- 1, Pi), by BE, we have B(r- 1, Pi) 
=B(r- 1, Pi) or Pi and Pi* are {a,(Pi)}-equivalent. In the latter case by USPA we 
derive g(a,(P,), Pi) cg(a,(P,), Pi). In the former case we set PF* such that 

B(r-l,Pi)=B(r-l,P,**), 

Pi and P,** agree on A - B(r - 1, Pi), 

Pi and P:* agree on B(r - 1, Pi). 
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Then by USPA, Pj and Pz* are B(r- 1, Pi) equivalent and, hence by LCI, 

g(a,(Pi), Pi) =g(a,(Pi), P”*). By USPA again, g(a,(Pi), PF*) cg(U,(Pi), Pi). Hence, if 
Pi and Pi are not {u,(P,)}-equivalent then P,d(P,)P:. 

This completes the proof of the theorem. 

7. Conclusion 

In this paper, we have presented a notion of non-cooperative strategic 
equilibrium-protective equilibrium-relevant for risk-averse agents without any 
information about other individuals’ preferences. If individuals do not have any 
information about other agents’ strategic choices they have to choose their 
strategies based solely on knowledge about their own preferences and about the 
rules of the game. If a social choice function is to be implementable via protective 
equilibrium, then the set of protectively non-dominated strategies must coincide 

with the set of strategies equivalent to truth-telling. Under most of the well- 

studied SCF’s like Borda count, plurality voting or SCF’s based on majority 
voting, strategies not equivalent to truth-telling would also turn out to be 
protectively non-dominated. In particular, these rules would all violate USPA - 
one of the necessary conditions for direct implementability via protective 

equilibrium. However, given our assumptions, there does exist a non-empty 
‘class of social choice functions (containing some forms of ‘voting by veto’), under 
which individuals would always use their truthful strategies. 

Of course, this result is based on the extreme assumption of complete ignorance 
about other individual’s preferences. Much of the literature on implementation 
makes the polar assumption of full information. It seems pointless to argue about 

the relative merits of these assumptions. Surely, ‘reality’ lies in between. We hope, 
however, that the present result clarifies the type of framework in which 
possibility results on non-manipulability and/or implementability can be proved. 

It would also seem worthwhile to introduce strategic equilibrium concepts based 
on ‘partial information’. A particularly interesting framework would seem to be 
one where agents choose their strategies, given full knowledge of other agents’ 
preferences, but only partial knowledge of their strategic behuviour. 

Appendix 

We prove the Lemma by several examples. 

Lemma. BE, LCI and USPA are logically independent. 

PVCJC)/. WC show that the following statements can be true: 

(i) USPA is satisfied, but neither LCI nor BE. 
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(ii) LCI is satisfied, but neither USPA nor BE. 
(iii) 1~1: is statistied, but neither USPA nor LCI. 
(iv) USPA and LCI are satisfied, but not BE. 
(v) USPA and BE are satisfied, but not LCI. 
(vi) LCI and BE are satisfied, but not USPA. 

Let Q be an arbitrary asymmetric ordering over A. 

(i) Let A={a,,a,,a,,a,,a,}, 1={1,2,3}. For any P, 

(a) If P, and Q agree on B(2, Pr), thenf(P) = {x/x is the Q-maximal element 
in A-B(2,P,)-B(l,P,)). 

(b) If P, and Q do not agree on B(2, Pr), thenf(P) = {x/x is the Q-maximal 
element in A-B(2, P,)-B(l,P,)}. 

(ii) f3 of section 4 satisfies LCI, but violates USPA and BE. 

(iii) Let A=(a,,a,,a,,u,,u,), Z=(1,2,3). For any P, 

(a) If P, and Q agree on B(2,P,), then f(P)= {x/x is P,-minimal on 

A - B(2, P,)}. 
(b) If P, and Q agree on B(2,P,), then f(P)= {x/x is P,-minimal on 

A-W2,P,)). 

Thus, the order in which individual 1 vetoes two alternatives determines whether 
2 or 3 is an ‘anti-dictator’ over the remaining pair of alternatives. 

This violates USPA and LCI, but satisfies BE. 

(iv) f5 of section 4 satisfies USPA and LCI, but violates BE. 

(v) f4 of section 4 illustrates this case. 

(vi) For all P, let f(P) = u,(P,), i.e., individual 1 is an ‘anti-dictator’. 

This satisfies LCI and BE, but violates USPA. 
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